
Computational Thinking Practice Brief

© SRI International, Digital Promise, University of Virginia, and Vanderbilt University 2022. This

work is licensed under CC BY-NC-SA 4.0 license. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/4.0/

Computational

Thinking

Brief

https://creativecommons.org/licenses/by-nc-sa/4.0/

Computational Thinking Practice Brief

© SRI International, Digital Promise, University of Virginia, and Vanderbilt University 2022. This

work is licensed under CC BY-NC-SA 4.0 license. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/4.0/

What is computational thinking?
Computational thinking provides a framework for using a computer’s programming power to

explore scientific phenomena or engineering design problems and solutions. Using

computational thinking involves developing or revising computer programs to help answer

questions in science and engineering, such as by developing models. To do this there are a set

of routines and phrases used in all computer languages for coding the computer to build and

execute the model, and help answer the question.

What isn’t computational thinking?
Computational thinking is not purely plugging numbers into an existing program to answer a

question (e.g. using a calculator), not is it merely following a set of instructions that might

resemble a computer program. Computational thinking must in some way have the potential to

leverage the computational power of a computer. Computational thinking can, however, be done

without a computer, as the routines and phrases of computational thinking can be applied

without the use of technology.

How are we using computational thinking in the curriculum?
Computational thinking is used in the curriculum when students are asked to develop the code

needed to model the science phenomenon and test engineering design solutions.

Computational thinking helps students organize their model code in a systematic and logical

way that makes it easier to check if the model is correct. Students will need to combine their

experiences with the conceptual models and hands-on activities to develop their computational

models for water runoff. The crosscutting concept of systems and matter (conservation) will help

them keep track of how they are understanding and using their models: What’s going into the

system? What’s coming out? What interactions are occurring in the system?

How are we supporting students’ computational thinking?
We are supporting connections between students’ conceptual models representing

water flow and their computational models, which make numerical predictions about water flow

for specific amounts of rainfall and surface materials. Students articulate the basic water flow

relationships in the conceptual models, then specify these relationships in their computational

modeling code.

The block-structured language we have created to help students build and understand

their models is simple and intuitive. It avoids students have to learn complex syntax (language)

to construct their models and helps students leverage everyday language and science

concepts.

Before working on building the computational model for the runoff scenario, students

have the chance to experience the routines and languages of Computational Thinking in the

context of a set dice games. This approach introduces students to computational concepts like

conditionals, variables, and expressions in a familiar context, before extending their

understanding to a science context.

https://creativecommons.org/licenses/by-nc-sa/4.0/

